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Abstract—Under the exploration of the future video coding
standard a new transform design called Adaptive Multiple
Transform (AMT) has been proposed. This design involves five
DCT/DST-based transform types known as: DCT-II, DCT-VIII,
DCT-V, DST-I and DST-VII. This work, proposes multiplierless
hardware architectures of size 4 for all considered transform
types. These architectures are implemented in FPGA benefitting
from both correlation and symmetry properties of the matrices
coefficients. This paper presents and compares two different
architecture aspects without and with involving state-machines
to evaluate their effect on the proposed hardware design. The
experimental and synthesis results show that the two methods,
supporting all five transform types, require less than 3% of the
offered FPGA device area and provide respectively 318 MHz
and 285 MHz as maximum operation frequency. With adding
the pipelining operation, the proposed designs can support real
time coding of 4Kp30 and 2Kp60 videos, respectively. Moreover,
the implementation based on state-machines offers about 45%
operations number and hardware area reduction.

I. INTRODUCTION

The High Efficiency Video Coding (HEVC) [1] is the latest
video coding standard defined by the International Telecom-
munication Union/Telecommunication (ITU-T) and the In-
ternational Organization for Standardization (ISO) in 2013.
HEVC provides a bit-rate reduction up to 50% with respect
to Advanced Video Coding (AVC) standard [2] for the same
subjective video quality [3], [4].
The exponential increase of the users demand for high video
quality applications stresses the need of designing a new video
coding standard. Recently, to face these new challenges, the
ITU-T and ISO collaboration has created a new team called
Joint Video Exploration Team (JVET) charged to investigate
a potential future standard with higher coding performance
than HEVC. Therefore, through their several meetings [5],
a new software called Joint Exploration test Model (JEM),
based on HEVC reference HM16.6 [6], has been established to
develop and test the proposed technical contributions. The JEM
software provided about 25% to 30% coding gain compared
to HEVC [7], [8].
This gain comes from a summation and a consequence of
several algorithmic improvements such as the new approach of
transform called Adaptive Multiple Transform (AMT) which
involves new transform types from Discrete Cosine Transform
(DCT) and Discrete Sine Transform (DST) family. A detailed
description of all tools is provided in document [9]. Actually,
this coding gain was enabled at the expense of higher complex-
ity (up to x10) at both encoder and decoder sides compared to
HEVC (HM) [7]. Therefore, this high complexity becomes a

real issue for the development of a new video coding standard.
This study focuses on the transform module as one of the most
time consuming operation in the JEM software especially with
involving four new transform types of DCT/DST family. This
paper proposes a simplified algorithm with optimized hardware
architectures of all transform types predefined of size 4.
The rest of the paper is organized as follows. The new
transforms used in the JEM software as well as the exist-
ing hardware implementations of DCT-based transforms are
described in Section II. Section III introduces the proposed
hardware architectures of the new transform types of size
4. The experimental and synthesis results are provided and
discussed in Section IV. Finally, Section V concludes this
paper.

II. RELATED WORK

A. Adaptive Multiple Transform Design
The HEVC standard is based on the the well-known DCT

type II as the main transform function and the DST type VII for
Intra code blocks of size 4×4. In the the JEM exploration soft-
ware, the use of trigonometric transforms has been extended
with the Adaptive Multiple Transform (AMT) that includes
DCT-II, DCT-V, DCT-VII, DST-I and DST-VII transforms. The
AMT algorithm is applied at the processing unit level (inter
or intra prediction residual block) A specific CU-level flag is
added to signal whether single or multiple transforms is used.
If the CU-level flag is equal to 0, the classic HEVC transforms
(DCT-II and DST-VII) are applied, otherwise two additional
flags are added to signal the horizontal and vertical transforms
used for the current CU [9].
For both Inter and Intra CU blocks, the JEM encoder encodes
the CU with all transforms within the selected set and then
chooses the one that minimizes the rate distortion cost. Re-
lated to their magnitude characteristics, the combinations of
these transform types contribute efficiently and improve the
flexibility of the transform design [10]. However, the fact that
five transform types will be excessively evaluated for each
CU, comes with the cost of higher computation complexity.
This can be an issue for real time implementation especially
that most of the involved transform types do not have a fast
implementation [11].

B. Fast DCT/DST implementations
Several previous video coding standards are based on the DCT-
II type transform. Therefore, many works proposed an efficient
hardware implementations for DCT-II type transform with
simplified decomposition methods. Shen et al [12] presented



a unified Very-Large-Scale Integration (VLSI) architecture for
4, 8, 16, and 32 point Inverse Integer Core Transforms (IICT).
A multiplierless technique was applied to the 4- and 8-point
IDCTs, and regular multipliers and hardware sharing were
applied to the 16- and 32-point IICTs. To reduce the required
hardware resources, the memory was transposed using the
Static Random Access Memory (SRAM) module.
Paramud et al. [13] presented an efficient and reusable ar-
chitectures for the implementation of DCT-II for different
lengths using constant matrix multiplication. Moreover, the
proposed architecture can be pruned to reduce the complexity
of implementation substantially with only a marginal effect on
the coding performance for both folded and full-parallel 2-D
DCT implementations.
Ahmed et al. [14] proposed a dynamic N-point DCT for HEVC
designed all inverse transform sizes (4 × 4, 8 × 8, 16 × 16
and 32 × 32). The hardware architecture is partially folded
in order to save the area and improve the speed up of
the design. The proposed architecture reached as maximum
frequency of 150 MHz which enables to support real time
of 1080p30 video coding [14] .Ahmed et al [15] proposed a
unified FPGA architecture of Inverse DCT-II for all transform
unit sizes through sparse matrices decomposition eliminating
multiplication operations. To further reduce hardware area,
they exploited resources reuse and involved multiplexers to
provide multiple coefficients for large sizes. The proposed
architecture enables to reach an operational frequency up to
284 MHz.
Moreover, some works in the literature proposed hardware
implementations of other DCT/DST transform types. Authors
in [16] proposed an optimized hardware cost of DST-VII and
DCT-VIII types with 5 multiplications and 11 additions for
4× 4 instead of respectively 12 and 16 in the original design.
Work in [17] also minimized the number of operations of
the DCT and DST transform types compared to the original
but with using multiplications which are heavily resources
consuming operations.
At the best of our acknowledgement, there is no contributions
for a low complexity architecture sufficient enough to hold all
these five transform types together. Therefore, we propose in
this paper a multiplierless and low cost consumption architec-
ture for 4×4 size of AMT transform types to further preserve
the hardware area while maintaining the desired performance.

III. HARDWARE ARCHITECTURES OF THE AMT
TRANSFORM TYPES

The JEM codec is based on transform basis functions to
calculate multiplication matrices coefficients. Hence as a first
step, we extracted these matrices to be used as an input for the
hardware implementation. In the following, we will present the
proposed decomposition algorithms of each transform type for
size 4 × 4 with their associated architectures benefiting from
the matrices correlation and symmetry. The general equation
for all transform types is:

Dst 1D = M4 · Src (1)

where Src [src0...src3] represents the residual vector which is
the input of the 1D-transform unit and Dst 1D [dst0...dst3] is
the corresponding output one.

A. DCT-II transform
The only difference, with respect to HEVC DCT-II transform,
consists in the coefficients values while the symmetric property
of the matrix remains unchanged. Therefore, proceeding with
the same decomposition method proposed in [15], the size 4
of DCT-II matrix will be computed as follows: In equation (1),
M4 can be described as:

M4 = P4r ·M4.1 · P4.1 (2)

where M4=

256 256 256 256
334 139 −139 −334
256 −256 −256 256
139 −334 334 −139


P4.1 =

 1 0 0 1
0 1 1 0
0 −1 1 0
−1 0 0 1

 and P4r =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


in order to obtain the bloc-diagonal matrix as follows:

M4.1=

256 256 0 0
256 −256 0 0
0 0 −139 −334
0 0 334 −139


(
256 256
256 −256

)
⊕
(
−139 −334
334 −139

)
where ⊕ is direct sum operator.

M4.11=
(
256 256
256 −256

)
and M4.22=

(
−139 −334
334 −139

)
M4.11 requires 2 additions and 2 shifts operations. However

M4.22= 128 x
(
−1 −3
3 −1

)
+
(
−11 50
−50 −11

)
and of

course with replacing these coefficients by their equivalences
it will require then 16 additions and 14 shifts. Fig. 1 illustrates
the 4 point DCT-II hardware architecture.
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Fig. 1. Proposed hardware architecture for DCT-II size 4



B. DST-I transform
The previous decomposition principle can be applied since
the DST-I matrix coefficients present the same symmetric
properties than DCT-II.

M4=

190 308 308 190
308 190 −190 −308
308 −190 −190 308
190 −308 308 −190


Through the same sparse matrices we obtain the following
bloc-diagonal matrix:

M4.1=

190 308 0 0
308 −190 0 0
0 0 −190 −308
0 0 308 −190


We can notice that coefficients are similar in both submatrices,
that’s why it would be the same block architecture with
appropriate signs.(

190 308
308 −190

)
= 190 ·

(
1 1
1 −1

)
+ 118 ·

(
0 1
1 0

)
This equation requires 12 additions and 12 shifts as number of
operations . Fig. 2 presents the proposed architecture of DST-I.
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Fig. 2. Proposed hardware architecture for DST-I size 4

C. DST-VII transform

M4=

117 219 296 336
296 296 0 −296
336 −117 −296 219
219 −336 296 −117


Noticing that the 1st, 3rd and 4th rows have the same coef-
ficients but in different order and signs, the idea consists in
designing one block that can be used three times in parallel
with the appropriate coefficients order and signs. This equation
is an example of the decomposition adopted for the first output:

dst 0 = 128 · [src 0 + 2(src 1 + src 2 + src 3) + src 3]

+ 8 · [−src 0− 5(src 1− src 2)− 6src 3]

− 3 · [src 0− src 1] .
(3)

The DST-VII transform architecture presented in Fig. 3 details
how additions and shift operations are used to compute the
DST-VII transform while eliminating all multiplications.
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Fig. 3. Proposed hardware architecture for DST-VII size 4

D. DCT-VIII transform

M4=

336 296 219 117
296 0 −296 −296
219 −296 −117 336
117 −296 336 −219


Compared to the DST-VII matrix, DCT-VIII one has the same
coefficients but in inverse order for each row. Then, with
only inversing the inputs order and assigning the appropriate
coefficients signs we can easily benefit from DST-VII (size 4)
architecture to implement the DCT-VIII transform type with
no additional computational complexity.

E. DCT-V transform

M4=

194 274 274 274
274 241 −86 −349
274 −86 −349 241
274 −349 241 −86


Coefficients redundancies in M4 allowed us to propose an
architecture, presented in Fig. 4. This architecture consists
in one block charged to provide the 1st output. This block
requires 7 additions and 6 shifts. A second block (block2-
DCT5) is used three times in parallel modifying only the inputs
order to obtain the other outputs using 14 additions and 7
shifts.
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Fig. 4. Proposed hardware architecture for DCT-V size 4

IV. EXPERIMENTAL AND SYNTHESIS RESULTS

The five transform types architectures were specified in
VHDL language using Modelsim software tool.

A. Simulation results
1) State-machine based architecture:

A unified circuit that encompasses the different types for size
4 is designed. In DST-VII (Fig. 3), DCT-VIII- and DCT-V
(Fig. 4) architectures, there was a component that has been
used three times at once. Taking advantage of this property,
we noticed that introducing a state-machine managing those
blocks operation sequentially, according to a definite control
unit, would provide a considerable computational complex-
ity reduction compared to the first proposed implementation
method. Table I shows the performance of both solutions (no
state-machine 1st method and with state-machine 2nd method)
in terms of required operations (adders and shifts) and clock
cycles. We can notice that the number of operations is mainly
related to the values of the coefficients matrices. It also gives
us a clear idea how using state machines (2nd) enables about
45% reduction in computational complexity at the expense of
higher clock cycles.

TABLE I. PERFORMANCE OF THE 1st (NO STATE MACHINE) AND 2nd

(WITH STATE MACHINE) IMPLEMENTATION METHODS

Adders Shifts Clock cycles
1st meth. 2nd meth. 1st 2nd 1st 2nd

DCT-II 24 24 16 16 4 4
DST-I 28 16 24 12 5 7

DST-VII 46 18 21 9 5 9
DCT-VIII 0 0 0 0 6 10
DCT-V 49 21 27 13 5 9
Total 147 79 88 50 - -

Reduction – 46 % – 44% – –

Table II presents a comparison between the original design
using multiplication operations and the multiplierless proposed
architectures under Stratix-III EP3SL340F1760C4 FPGA de-
vice using the software tool Quartus II 9.0. The synthesis
results show that the proposed methods offer a wide logic
elements optimization. The low reserved registers number

of the original solution is due to the lack of intermediate
computations by shift and addition operations. On the other
hand, the decrease in the number of operations (Table I, 2nd

method) was reflected automatically to the hardware cost due
to the reuse of the hardware resources offered through state
machines. Table II shows also that the two proposed designs
have reached respectively 318 MHz and 285 MHz as maximum
processing frequencies.

TABLE II. SYNTHESIS RESULTS OF THE PROPOSED ARCHITECTURES

original 1st method 2nd method
Pins 303 (41%) 295 (40%) 295 (40%)
ALUTS 10116 (5%) 6842 (3%) 3802 (1%)
Registers 994 (< 1%) 3603 (1%) 2219 (< 1%)
Frequence 356 MHz 318 MHz 285 MHz

2) Discussion:
As the design architecture (1st method) provides parallel
output generation, we can reach further optimization by adding
the pipelining operation. This latter is more interesting when
it concerns computing of multiple rows of size 4 (4x4 blocks
size as an example). Table III shows the clock cycles required
for computing 1D 4x4 blocks size of each transform type.
Of course, the more rows are computed the more interesting
pipeline becomes, especially for future works (other transform
sizes) as the AMT adopts asymmetric block sizes (4x8 , 4x16,
4x32, 4x64..).

TABLE III. CLOCK CYCLES OF PIPELINED 4X4 BLOCKS

DCT-II DST-I DST-VII DCT-VIII DCT-V
Clock cycles 1st 11 12 12 13 12

Clock cycles 2nd 11 22 30 30 30

The required frequency to compute 4K videos at 30 frames
per second (fps) is 202 Mhz (13*3840*2160*30 / 4*4).
Therefore, the first proposed design, reaching an operational
frequency up to 318 Mhz, can easily support 4K coding
assuming only 4x4 block sizes. With involving other larger
sizes and more computational complexity we may have dif-
ferent results. On the other hand, although the state machine
architecture provided computational and area optimization, it
can’t really benefit from the pipelining operation because of
data dependencies and lack of total parallel output generation.
As an example, DST-I requires 22 clock cycles to compute 4x4
block instead of 28 (7*4) without pipeline. This can support
2K resolution video processing at 60 fps.

V. CONCLUSION

The hardware implementation AMT design involving DCT-
II, DST-I, DST-VII, DCT-VIII and DCT-V transform types
is has been investigated in his paper. A multiplierless im-
plementation of these transforms for size 4 is presented.
Concerning the hardware architectures, two aspects have been
introduced and compared in this study. The first one is based
on eliminating the multiplication operations (with adders and
shifters) using symetric and sparse matrices. The second one
provides a more optimized computational complexity using
state-machines to preserve the hardware resources, while pre-
senting some additional clock cycles.
As future works, this study can be extended for the other larger
sizes where these methods can be combined in order to provide
an efficient tradeoff between hardware cost and required clock
cycles.
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