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ABSTRACT

Computer vision applications such as refocusing, segmentation and
classification become one of the most advanced imaging services.
Light Field (LF) imaging systems provide a rich semantic informa-
tion of the scene. Using a dense set of cameras and microlens arrays
(Plenoptic camera), the direction of each ray coming from the scene
toward the LF capture system can be extracted and represented by
spatial and angular coordinates. However, such imaging system in-
duces many drawbacks including the large amount of data produced
and complexity increase for scene representation. In this paper, we
propose an efficient LF image coding scheme. This scheme first en-
codes a sparse set of views using the latest hybrid video encoder
(JEM). Then, it estimates a second sparse set of views using a linear
approximation. At the decoder side, we use a Deep Learning (DL)
approach to estimate the whole LF image from the reconstructed
sparse sets of views. Experimental results show that the proposed
scheme provides higher visual quality and overcomes the state of
the art LF image compression solution by 30 % bitrate gain.

Index Terms— Light Field, Machine Learning, Linear approx-
imation, CNN, future video coding

1. INTRODUCTION

Recently, Light Field (LF) imaging is becoming one of the most
trending multimedia technology. It consists in representing the scene
from different point of views. Mathematically, a plenoptic image
can be described by a 7 dimensional function L(\, ¢, z, vy, 2, 0, ¢)
assigning to every point in free space and to every direction a cor-
responding radiance for specific wavelength A and time. For static
scenes, the dimension of this function is reduced to 5 dimensions
without considering time and wavelength. On the other hand, the
plenoptic function can be represented by 4 dimensions with 2 paral-
lel plans s, ¢ and u,v denoted by L(u, v, s, t) [1, 2] as illustrated
in Fig. 1. Raytrix [3] and Lytro [4] companies provide commercially
LF cameras with array of microlens (plenoptic camera). Different
from conventional cameras, a plenoptic camera can capture multiple
views of a scene from a single shoot. There are several represen-
tations of the LF image. For instance, there are the micro-image,
sub-aperture and epipolar image representations [5]. For plenoptic
images, the baseline between two sub-aperture views is very nar-
row. The disparity range between the adjacent sub-aperture views is
smaller than 1 pixel [6].

Several studies [2, 7, 8, 9, 10, 11, 12] have investigated the
compression of LF images in its different representations. The first
works used vector quantization and LempelZiv entropy coding [13]

K. Samrouth

LaSTRe, EDST
Lebanese University
Tripoli, Lebanon

L(X7 Y, 2, 67¢)

(a) 5D-LF representation

L(u, v, s, t)
(b) 4D-LF representation

Fig. 1: The spatial parametrization of SD-LF and 4D-LF represen-
tations, the s, t plane is closer to the camera, and the u, v plane is
closer to the scene [5]

tools to remove statistical redundancies within the LF data [2]. Sub-
sequently, the pseudo sequence coding approach [7], [9] consists in
rearranging LF elements (usually sub-aperture images) as a pseudo
sequence in a specific order (ie. spiral, horizontal, zigzag, raster scan
order). This pseudo-sequence is then coded using classical hybrid
(Intra and Inter predictions) video encoders. The High Efficiency
Video Coding (HEVC) standard through its reference software
model HEVC reference Model (HM) and Joint Exploration Model
(JEM) codec developed for the future video coding standard [14] are
used in [7, 9] and [15], respectively. The Joint Video Exploration
Team (JVET) has been recently investigating several new coding so-
lutions [16] to show the evidence of developing a new standard with
coding capability beyond HEVC. These new tools enable to increase
the coding efficiency by up to 30% with respect to HEVC [14].
Zhu et al. [7] propose a new method that reduces the number of
reference frames by dividing the 4D LF sub-aperture image into 4
quadrants which are separately encoded. The inter dependency is
then built to minimize the distance between reference views.

The predictive-coding approach selects a set of views from the array
of sub-aperture views or Elemental Images (EI) to be encoded as
reference for coding the remaining no-reference LF views. X. Jiang
et al. [10] propose an approximation method called Homography
Low Rank Approximation (HLRA) based joint optimization of mul-
tiple homographies and low rank approximation. HLRA method
uses homography in order to reduce the error produced by low rank
approximation between the sub-aperture views. Le Penduetal. [11]
propose a coding method that selects a sparse set of sub-aperture



views (4 corners) in order to synthesize the whole LF image using
the depth image and low rank matrix completion. Olsson et al.
[17] propose to encode a lenslet image in HEVC intra-prediction
by introducing inter-prediction within the LF image. Shengyang et
al. [18] divide LF image into 2 sets of views where the first set of
reference views (S4) are encoded with HEVC and the second set of
views (Sp) are estimated from the first set by Linear approximation
(LA). Supervised learning [12], [19] with Convolutional Neural
Networks (CNN) has been widely adopted in computer vision appli-
cations. A super-resolution algorithm for LF based on CNNs, which
are used to reconstruct all sub-aperture views at higher resolution
(increasing the spatial resolution) has been presented in [20].

In this paper we propose a compression scheme based on a joint
LA with CNN to estimate the LF views. The first set of selected
reference views (Sg) are coded with the JEM video codec. Then,
a second set of views (Sg) are linearly estimated from the first de-
coded set of views. The bitstream of the first reference set with
the coefficients of LA are transmitted to the decoder. The decoder
decodes the reference set of views, estimates the second set with the
received coefficients and then synthesizes the third set of views with
the trained CNN.

The remainder of this paper is organized as follows. Section 2
describes two efficient solutions for LF views coding and estimation.
Then, in Section 3 we investigate the proposed LF compression so-
lution. Section 4 presents and discusses the experimental results.
Finally, Section 5 concludes this paper.

2. RELATED WORKS

As mentioned in Section 1, the proposed compression solution is
based on LA and Deep Learning (DL). In this section, we briefly
introduce these two concepts.

2.1. Linear Approximation

In [18], Shengyang et al. propose a powerful LF coding scheme.
The distance between adjacent cameras is a constant scalar. Mathe-
matically, the LF image is modelled by a 4D function:

L:QxI{—= R}, {p.e}) =L{p, e} {p €2} (1)

where p is a scene point, ) represents the image plane and ¢ :=
(u,v)T denotes the offset of one view w.r.t. the center view in lens
plane. As shown in Fig. 2, this scheme consists in coding a sparse
set of LF views (S4) using HEVC and then linearly approximating
the other views (Sp) and sending only the approximation coefficients
to the decoder. The LA prior of the dropped vectorized view j is
given as follows:
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where M is the number of selected views and N is the total view
number, 1 < m < M and z,, are the weight coefficients. This cod-
ing scheme enables between 37.41% and 45.51% Bjgntegaard Delta
Bit Rate (BD-BR) reduction on average compared to the HEVC en-
coding all views (HM-All). This gain is achieved when half of views
are encoded transmitted to the decoder and other half of views are
linearly approximated.
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Fig. 2: Linear Approximation Coding Scheme [ 18]

2.2. Deep Learning

In [21], authors proposed a learning-based approach to synthesize
new views from a sparse set of input views. The LF synthesis scheme
is composed of disparity and color estimation components (Fig. 3).
Authors use two sequential CNNs to model these two components
and train both networks simultaneously by minimizing the error be-
tween the synthesized and ground truth images. They used only
four corner sub-aperture views from the LF captured by the Lytro
Illum camera to synthesize high-quality images that are superior to
the state-of-the-art techniques. As shown in Fig. 3, a set of features
(mean and standard deviation) of a sparse set of views are fed to the
first CNN that estimates the disparity at an intermediate view using
Equation 3.

Dy = ga(K), 3)

This equation models how the estimated disparity D, at the novel
view at position g is generated from the set of features K including
the mean and standard deviation. Finally, the second CNN generates
the final intermediate view using Equation 4.

Fy = gc(H), @

where F, represents the image at the intermediate view, H the fea-
ture set and g. defines the relationship between these features and
the final intermediate image.
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Fig. 3: Deep Learning Views Synthesis [21]

3. PROPOSED COMPRESSION SOLUTION

Kalantari et al. have not taken into consideration the bitrate criterion
and Zhao et al. have shown a high visual quality for reconstructed LF
images when a large number of views (half of views) are used as ref-
erence. Therefore, we propose in this paper to smoothly merge these
two concepts in order to build an efficient LF compression solution
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Fig. 4: CNN and LA based coding scheme

for a better rate-distortion optimization. In the following section, we
explain in details the encoder and decoder of the proposed coding
scheme.

3.1. Coding Scheme

In the proposed scheme, we consider the sub-aperture based repre-
sentation of LF image of 8 x 8 views. It consists in dividing the
plenoptic image into four Groups Of Views (GOV) (4 x 4 images
each). For each GOV, we take the 4 corners as reference in order
to synthesize the novels views. In total, the number of references
views is 16 for the whole LF image. As first step, we select a sparse
set of sub-aperture views (Sr in blue) with specific position that give
the best result after testing all possible combinations. Then, we rear-
range the nine Sk views into a pseudo sequence (zigzag order scan)
and encode it with a simple JEM encoder with chrominance down-
scale, e.g yuv 420. In the second step, we estimate the 7 adjacent
views set (Sg in red) using linear approximation explained in Sec-
tion 2.1.

For each frame in the dropped views set Sg, we linearly approximate
the views with the decoded views in Sg set. An approximation model
is used to optimize the reconstruction of the weight coefficients X,
by using the Spectral Projected Gradient for L1 (SPGL1) function.
This one generates the coefficients for one target view at each time
and for each channel color separately (i.e. rgb, 3 channels).

As this vector X contains floating point values, we quantize X at
16 bits before encoding it with entropy coding. The JEM bitstream
encoding the Sk set of views with the quantized and entropy coded
linear coefficients are sent to the decoder.

3.2. Decoding Scheme

At the decoder side, the JEM bitstream is first decoded to reconstruct
the reference views of the set Sg. Based on these views and by us-
ing the disparity correlation and linear approximation between the
views, we search the optimal vector of coefficient X. Then, from
the decoded vector X and decoded views Sg, we estimate the other
sparse set of views Sg. The two decoded sets Sg and Sk together
form the 16 reference views used to feed the DL block in order to
synthesize the remaining 48 views.

3.3. CNN Training Phase

For training the CNN, we run the training of DL that uses the dispar-
ity and color estimation components in two sequential CNNs. These
CNNs are used to synthesize the novel views for each GOV sepa-
rately with 7 layers (4 convolutions and 3 ReLUs), angular resolu-

tion 4 x 4 and the numerical evaluation and the final image has index
(2,2). We take the 4 corner source views as input. For this training,
we used 100 images, 28 from Stanford Lytro LF archive [22], and
72 from California Lytro LF archive [21] captured by Lytro camera.

4. RESULTS AND DISCUSSION

4.1. Experimental setup

The proposed scheme described in the previous section (DL-LA-9-
7) encodes 9 views with JEM and linearly estimates 7 views to con-
struct the 16 views used as an input of the trained CNN block. We
compare the proposed scheme to four other solutions (we also imple-
mented): JEM-AII that encodes all views with the JEM software in
Random Access (RA) coding configuration, HM-AlI that encodes all
views with the HM [23] (HEVC) reference software in RA config-
uration, LA-32 solution which encodes half of views with JEM and
other half views are linearly approximated at the decoder [18] and
DL-16 scheme that encodes 16 views with the JEM and estimates
the rest of views at the decoder by the trained CNN block with the
16 JEM decoded views as input. Nine LF images illustrated in Fig. 5
have been selected from Ecole Polytechnique Federale de Lausanne
(EPLF) LF images dataset [24] composed of 8x8 views.

The BD-BR [25, 26] is a Peak Signal to Noise Ratio (PSNR) based
metric. It is used in this paper to assess the gain of the solutions
compared to the anchor solution. A negative BD-BR value refers
to a bitrate reduction compared to the anchor while a positive value
expresses a bitrate overhead.

Fig. 5: Thumbnails of the considered nine LF images from EPFL
data set [24] 1) ParcDuLuxembourg 2) FountainVincent2 3) Friends]
4) University S) Pillars 6) Friends4 7) Yan&KriosStanding 8)
RustyFence 9) Stairs

4.2. Results

Table 1 gives the BD-BR performance of four solutions JEM-ALI,
LA-32, DL-16, DL-LA-9-7 with respect to the anchor encoding the
64 views with the HM reference software (HM-All). We can notice
from this table that the proposed scheme DL-LA-9-7 enables in
average the highest coding performance of 51.16 % bitrate reduc-
tion followed by DL-16 solution with 48.38 % and then LA-32 and
JEM-AIl with 32.74 % and 12.51 % bitrate reductions, respectively.
The last column of Table 1 gives the BD-BR performance of the



Fig. 6: Visual quality of FriendsI LF image, view (2,2) in the ar-
ray sub-aperture 8 x 8, QP= 32. From left to right: encoded,
estimated and synthesized views respectively with JEM-AIl (bi-
trate 7.11 x 10~* bits per pixel (bpp), WPSNR = 37 dB), LA-32
(5.03 x 10~ bpp, 36.51 dB), DL-LA-9-7 (3.06 x 10~* bpp, 36.3
dB)

proposed coding scheme with respect to the LA-32 solution. The
proposed scheme outperforms the state of the art solution by 30 % in
average with achieving a significant coding gain for all considered
LF images. It should be noted that the proposed solution shows an
inconsistent performance for 4) University image. This is mainly
caused by the interpolation interval of the BD-BR metric which con-
siders wider rate interval in the case of comparison with the HM-All
scheme than with the LA-32 scheme.

Fig. 6 gives a visual illustration of a zoom on the Friendsl esti-
mated LF view decoded with the JEM-AIl, LA-32 and DL-LA-9-7
solutions. We can notice that the three images look similar while
the bitrate is highly decreased by the proposed DL-LA-9-7 solution.
This one enhances the compression ratio by factors of 2.3 and 1.64
compared to JEM-AIl and LA-32 compression solutions, respec-
tively.

Fig. 7 shows the weighted PSNR (WPSNR) performance of
the five solutions versus the bitrate for two LF images Stairs and
Friends4. We can notice that the proposed scheme enables the high-
est PSNR performance at all considered rates for both images.

Table 1: Coding gains in terms of BD-BR of four solutions in
comparison with HM-AIl anchor. 1) ParcDuLuxembourg 2) Foun-
tainVincent2 3) Friendsl 4) University 5) Pillars 6) Friends4 7T)
Yan&KriosStanding 8) RustyFence 9) Stairs

BD-BR versus HM-All vs. LA-32

Im. |[JEM-AI | LA32 | DL-16 | DL-LLA9-7 || DLLA97
1) || -1660% | 31.39% | -39.00% | -42.68 % -15.96 %
2) || -1928% | -3457% | -5355% | -55.40 % 31.79 %
3) || -1080% | 2254% | -39.42% | -47.40 % 31.63 %
4 || 2003% | -6121% | -59.67% | -4452% -28.33 %
5) 456% | 2373% | -4736% | -52.07 % -40.54 %
6) 982% | -2310% | -35.30% | -44.20 % 2648 %
7) 029% | 2027% | -58.83% | -65.25% 5275 %
8 || -1519% | -3692% | -4784% | -52.52% 2439 %
9 || -1610% | -4096 % | -5452% | -56.48 % 25.15 %
’ Av. H 12.51% ‘ 3274% | -4838% | -51.16% H -30.77 %
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Fig. 7: wPSNR-based comparison of the five considered solutions

5. CONCLUSION

We have proposed in this paper a coding solution based on CNN
and linear approximation for 4D-LF images. By selecting a sparse
set of views, we fully exploit the correlation between adjacent views
to synthesize the novel views and reduce the number of reference
views. Experimental results showed that the proposed solution
reduces by 51% the bit-rate compared to the HM encoder and in-
creases the visual quality of the novel views. Moreover, the proposed
solution enables a bitrate reduction of 30% in average compared to
the state of the art LF image compression solution (LA-32).

As future works, we have identified several research ideas to fur-
ther enhance the coding performance of the proposed scheme with
using more advanced DL systems and enhancing the CNN parame-
ters with reinforcement learning. Moreover, a complexity evaluation
of the proposed solution will be investigated at both encoder and de-
coder sides. Finally, the optimal coding of residuals at the encoder
side will be investigated to further increase the quality of the esti-
mated views.
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